ENGINEERING GRAPHICS

 BE 110
Department of Mechanical

 Engineering
ENGINEERING

GRAPHICS

from Greek graphikos
the art or science of drawing a representation of an object on a two-dimensional surface according to mathematical rules of projection

40,000 years of drawing

Subjective

Objective

Graphics: a language

- Language \rightarrow Grammar
- Rules/Standards of engineering drawing (in India) are set by

Bureau of Indian Standards (B.I.S.)

Drawing Accessories

- Drawing Board
- Drawing Sheet
- T-square / Mini-drafter (Roll and Draw)
- Set Squares
- Large Compass \& Divider
- Protractor (pro-circle)
- Mechanical Pencil
- Eraser

Drawing Boards \& Drawing Sheets

T-Square

Mini-Drafter

Fig. 1.3 Mini drafter

Drawing Accessories

- Drawing Board
- Drawing Sheet
- T-square / Mini-drafter (Roll and Draw)
- Set Squares
- Large Compass \& Divider
- Protractor (pro-circle)
- Mechanical Pencil
- Eraser
*As this course is practical oriented, the evaluation is different from other lecture based courses.
Points to note:
(1) End semester examination will be for 50 marks and of 2 hour duration.
(2) End semester exam will include all modules except Module IV.
(3) 100 marks are allotted for internal evaluation: first internal exam 40 marks, second internal exam 40 marks and class exercises 20 marks.
(4) The first internal exam will be based on modules I and II and the second internal exam will be a practical exam based on Module IV alone.

Course Objectives

To enable the student to be able to effectively communicate basic designs through graphical representations as per standards.

Syllabus

Introduction to Engineering Graphics; Orthographic projections of lines and solids, Isometric projection, Freehand sketching, Introduction to CAD, Sections of solids, Development of surfaces, Perspective projection.

Expected outcome

Upon successful completion of this course, the student would have accomplished the following abilities and skills:

1. Fundamental Engineering Drawing Standards.
2. Dimensioning and preparation of neat drawings and drawing sheets.
3. Interpretation of engineering drawings
4. The features of CADD software

References Books:

- Agrawal, B. and Agrawal, C. M., Engineering Drawing, Tata McGraw Hill Publishers
- Anilkumar, K. N., Engineering Graphics, Adhyuth Narayan Publishers
- Benjamin, J., Engineering Graphics, Pentex Publishers
- Bhatt, N., D., Engineering Drawing, Charotar Publishing House Pvt Ltd.
- Duff, J. M. and Ross, W. A., Engineering Design and Visualization, Cengage Learning, 2009
- John, K. C., Engineering Graphics, Prentice Hall India Publishers
- Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K., Engineering Graphics with AutoCAD, PHI 2009
- Luzadder, W. J. and Duff, J. M., Fundamentals of Engineering Drawing, PHI 1993
- Parthasarathy, N. S., and Murali, V., Engineering Drawing, Oxford University Press
- Varghese, P. I., Engineering Graphics, V I P Publishers
- Venugopal, K., Engineering Drawing \& Graphics, New Age International Publishers

Types of
 Lines

| Line | Description | General Applications |
| :--- | :--- | :--- | :--- |
| A | Continuous thick | A1
 A2 |
| B Visible out lines edges | | |

Lettering

1. Legibility
2. Uniformity
3. Rapidity of Execution
4. Suitability for Reproduction

Lettering A ($d=h / 14$)

Characteristic		Ratio
Lettering height (height of capitals)	h	$(14 / 14) h$
Height of lower- case letters (without stem or tail)	c	$(10 / 14) h$
Spacing between characters	a	$(2 / 14) h$
Minimum spacing of base lines	b	$(20 / 14) h$
Minimum spacing between words	e	$(6 / 14) h$
Thickness of lines	d	$(1 / 14) h$

Lettering B $(d=h / 10)$

Characteristic	Ratio	
Lettering height (height of capitals)	h	$(10 / 10) h$
Height of lower- case letters (without stem or tail)	c	$(7 / 10) h$
Spacing between characters	a	$(2 / 10) h$
Minimum spacing of base lines	b	$(14 / 10) h$
Minimum spacing between words	e	$(6 / 10) h$
Thickness of lines	d	$(1 / 10) h$

Characteristic	Ratio	mm	
Lettering height (height of capitals)	h	$(10 / 10) h$	5
Height of lower- case letters (without stem or tail)	c	$(7 / 10) h$	3.5
Spacing between characters	a	$(2 / 10) h$	1
Minimum spacing of base lines	b	$(14 / 10) h$	7.00
Minimum spacing between words	e	$(6 / 10) h$	3
Thickness of lines	d	$(1 / 10) h$	0.5

DIMENSIONING

- Projection Line (Extension Line)
- Dimension Line
- Leader Line
- Dimension Line Termination
(Arrow Head)

- Origin Indication
- Dimension

- Chain, Parallel, Superimposed Dimensioning
- Dimension by Coordinates
- Methods
- Aligned
- Unidirectional
- Shape indication
Φ - Diameter
R - Radius
$\square-$ Square
SФ - Spherical Diameter
SR - Spherical Radius

PROJECTION

COMPONENTS OF PROJECTION

The Plane of

- Object to be

Projected

- Observer's Eye
(Station Point)
- The Plane of

Projection

- Rays/ Lines of Sight/

Projectors

SYSTEMS OF PROJECTION

SYSTEMS OF PROJECTION

ORTHOGRAPHIC (MULTI VIEW)PROJECTION

Direction Of Viewing To Get Top View

THIRD ANGLE PROJECTION

Projection	Symbol
First angle	
Third angle	

PROJECTION OF POINTS

PROJECTIONS OF A POINT IN FIRST QUADRANT.

$$
\begin{gathered}
\text { POINT A ABOVE HP } \\
\text { \& IN VP }
\end{gathered}
$$

POINT A IN HP
 \& INFRONT OF VP

ORTHOGRAPHIC PRESENTATIONS OF ALL ABOVE CASES. \&

Fv above $x y$, Tv below $x y$.

Fv above $x y$,
Tv on $x y$.

Fv on $x y$, Tv below $x y$.

PLEASE NOTE:
This is not an orthographic view. Just a representation of the method of projection as viewed from the left side.

Point A is
Placed In different quadrants and it's FV \& TV are brought same plane.

FV is visible as it is a view on VP. But as TV is a view on HP, it is rotated downward 90°, In clockwise direction.

The In front part of HP comes below xy line and the part behind VP comes above.

PROJECTIONS OF STRAIGHT LINES

SIMPLE CASES OF THE LINE

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP \& // TO VP)
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

Orthographic Projections
FV \& TV of Line AB are shown below, with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV $a^{\prime} b$ ' is not showing True Length \& True Inclination with HP

Note the procedure When FV \& TV known, How to find True Length. (Views are rotated to determine True Length \& it's inclinations with HP \& VP).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding FV ($a^{\prime} b_{1}{ }^{\prime}$) is showing True Length \& True Inclination with HP.

Note the procedure
When TL is known, How to locate FV \& TV. TL \& True Inclination and their horizontal components are drawn. Loci drawn. Then horizontal components are rotated to the loci to determine FV \& TV)

Here $a b_{1}$, horizontal component of $T L a^{\prime} b^{\prime}{ }_{1}$ gives length of TV.

Hence it is rotated
to get point b at the locus of b. ab will be TV. Similarly a'b' also is obtained which is FV.

The most important diagram showing graphical relations among all important parameters of this topic.

Study and memorize

1) True Length (TL) - a' b_{1}^{\prime} \& $a b_{2}$
2) Angle of TL with HP - θ
3) Angle of TL with VP - \varnothing
4) Angle of $F V$ with $x y-\alpha$
5) Angle of TV with $x y-\beta$
6) LTV (length of TV, $a-b$) = Component $\left(a-b_{1}\right)$
7) LFV (length of FV, $\left.a^{\prime}-b^{\prime}\right)=$ Component $\left(a^{\prime}-b^{\prime}{ }_{2}\right)$
8) Position of A- Distances of $a \& a^{\prime}$ from $x y$
9) Position of B- Distances of b \& b' from $x y$
10) Distance between End Projectors

SOLIDS

Dimensional parameters of different solids.

While observing FV, x-y line represents Horizontal Plane. (Hp)

While observing Tv, x-y line represents Vertical Plane. (Vp)

STANDING ON V.P
On it's base.
Axis perpendicular to Vp And // to Hp

RESTING ON V.P
On one point of base circle.
Axis inclined to Vp And // to Hp

LYING ON V.P
On one generator.
Axis inclined to Vp
And // to Hp

STEPS TO SOLVE PROBLEMS IN SOLIDS

Step 1: Simple Position (Axis $\perp^{\text {r }}$ to one reference plane); Draw FV \& TV of that solid in standing position:
(If it is resting on HP, assume it standing on HP)
(If it is resting on VP, assume it standing on VP)
Characteristic View:
IF STANDING ON HP- IT'S TV WILL BE TRUE SHAPE OF IT'S BASE/TOP.
IF STANDING ON VP- IT'S FV WILL BE TRUE SHAPE OF IT'S BASE/TOP.
The other view:
Outline of it's other view will be a RECTANGLE, if solid is cylinder or one of the prisms.
Outline of it's other view will be a TRIANGLE, if solid is cone or one of the pyramids.
Step 2: Second position (Axis //' to one reference plane and inclined to the other); considering solid's inclination with the reference plane on which it was standing initially, draw its new FV \& TV.
Step 3: Third Position (Axis inclined to two planes); considering remaining inclination, draw it's final FV \& TV.
GENERAL PATTERN (THREE STEPS) OF SOLUTION:

SOLID CONE
SOLID CYLINDER

A square pyramid, 40 mm base sides and axis 60 mm long, has a triangular face on the ground and TV of the axis makes an angle of 45° with the VP. Draw its projections. Take apex nearer to VP

NOTE:

Another way to express the same question;
A square pyramid, 40 mm base sides and axis 60 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of 45° with the VP. Draw its projections. Take apex nearer to VP
(The vertical plane containing the axis makes an angle of 45° with the VP) $=(T V$ of the axis makes an angle of 45° with the VP)

SOLUTION STEPS :

1. Simple Position (Axis \perp^{r} to reference plane): Here, axis \perp to HP. [since, solid on ground]. It's TV will show True Shape of base i.e., square [characteristic view]. Draw the characteristic view (square of 40 mm sides) in EDGE POSITION [one base edge \perp^{r} to x-y line] \& project FV taking 60 mm axis. Name all the points as shown in the illustration.
2. Second position (Axis $/ /$ to one reference plane and inclined to the other): Draw FV in lying position (Δ^{r} face on ground). i.e., redraw the FV with face o'c'd' on $x-y$. Project it's TV. Make visible lines dark and hidden dashed, as per the procedure. Name all the points.
3. Third Position (Axis inclined to two planes): redraw the TV inclined to $x-y$. Here apparent inclination of axis is given. So redraw the TV at 45° so that the TV of the axis is making 45°. (If true inclination was given, apparent inclination was to be found out using line rotation method). Project its FV. Name all the points.
4. Mark the dimensions.

NOTE:

Characteristic view in Edge Position when resting on edge or lateral face, in Corner Position when resting on corner or lateral edge.

Visible \& Invisible edges:

1. Draw proper outline of new view using Thick Continuous Lines (Outlines are always visible).
2. Decide direction of observer.
3. Select nearest point to observer and draw all lines starting from it as Thick Lines (Visible).
4. Select farthest point to observer and draw all lines (remaining) from it as Dashed Lines (Invisible).
5. A line crossing a visible line will always be invisible (or no two visible lines cross each other).
```
Simple Position
    (Axis Ir to
reference plane)
```


Second Position

(Axis I/' to one reference plane and inclined to the other)

Third Position (Axis inclined to two planes)

SYSTEMS OF PROJECTION

SYSTEMS OF PROJECTION

3-DIMENSIONAL DRAWINGS, or PHOTOGRAPHIC or PICTORIAL DRAWINGS.

ISOMETRIC DRAWING

> IT IS A TYPE OF PICTORIAL PROJECTION
> IN WHICH ALL THREE DIMENSIONS OF AN OBJECT ARE SHOWN IN ONE VIEW AND IF REQUIRED, THEIR ACTUAL SIZES CAN BE MEASURED DIRECTLY FROM IT.

IN THIS 3-D DRAWING OF AN OBJECT, ALL THREE DIMENSIONAL AXES ARE MENTAINED AT EQUAL INCLINATIONS WITH EACH OTHER.(120°)

PURPOSE OF ISOMETRIC DRAWING IS TO UNDERSTAND OVERALL SHAPE, SIZE \& APPEARANCE OF AN OBJECT PRIOR TO IT'S PRODUCTION.

ISOMETRIC AXES, LINES AND PLANES:

The three lines $A L, A D$ and $A H$, meeting at point A and making
120° angles with each other are termed Isometric Axes.

The lines parallel to these axes are called Isometric Lines.

The planes representing the faces of of the cube as well as other planes parallel to these planes are called
 Isometric Planes.

ISOMETRIC SCALE:

When one holds the object in such a way that all three dimensions are visible then in the process all dimensions become proportionally inclined to observer's eye sight and hence appear apparent in lengths.

This reduction is 0.815 or $9 / 11$ (approx.) It forms a reducing scale which Is used to draw isometric drawings and is called Isometric scale.

In practice, while drawing isometric projection, it is necessary to convert true lengths into isometric lengths for measuring and marking the sizes. This is conveniently done by constructing an isometric scale as described on next page.

TYPES OF ISOMETRIC DRAWINGS

ISOMETRIC VIEW OF PENTAGONAL PYRAMID
 STANDING ON H.P.

(Height is added from center of pentagon)

ISOMETRIC VIEW OF BASE OF PENTAGONAL PYRAMID STANDING ON H.P.

ISOMETRIC VIEW OF PENTAGONALL PRISM LYING ON H.P.

ISOMETRIC VIEW OF HEXAGONAL PRISM STANDING ON H.P.

CYLINDER STANDING ON H.P.

CYLINDER LYING ON H.P.

ISOMETRIC VIEW OF
 A FRUSTOM OF SQUARE PYRAMID
 STANDING ON H.P. ON IT'S LARGER BASE.

ISOMETRIC VIEW OF A FRUSTOM OF CONE

STANDING ON H.P. ON IT'S LARGER BASE.

PROBLEM: A SQUARE PYRAMID OF 30 MM BASE SIDES AND 50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A CUBE OF 50 MM LONG EDGES.DRAW ISOMETRIC VIEW OF THE PAIR.

PROBLEM: A TRIANGULAR PYRAMID OF 30 MM BASE SIDES AND 50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A CUBE OF 50 MM LONG EDGES. DRAW ISOMETRIC VIEW OF THE PAIR.

SOLUTION HINTS.

TO DRAW ISOMETRIC OF A CUBE IS SIMPLE. DRAW IT AS USUAL.
BUT FOR PYRAMID AS IT'S BASE IS AN EQUILATERAL TRIANGLE, IT CAN NOT BE DRAWN DIRECTLY.SUPPORT OF IT'S TV IS REQUIRED.

SO DRAW TRIANGLE AS A TV, SEPARATELY AND NAME VARIOUS POINTS AS SHOWN.
AFTER THIS PLACE IT ON THE TOP OF CUBE AS SHOWN.
THEN ADD HEIGHT FROM IT'S CENTER AND COMPLETE IT'S ISOMETRIC AS SHOWN.

PROBLEM:
A HEMI-SPHERE IS CENTRALLY PLACED
ON THE TOP OF A FRUSTOM OF CONE.
DRAW ISOMETRIC PROJECTIONS OF THE ASSEMBLY.

FIRST CONSTRUCT ISOMETRIC SCALE. USE THIS SCALE FOR ALL DIMENSIONS IN THIS PROBLEM.

